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• We emulated mechanistic model projec-
tions of fish PCBs in the lower Hudson
River.

• Emulated models used updated sedi-
ment PCBs and recovery rate to revisit
original predictions.

• Revised forecasts imply much longer
time to recovery in lower Hudson River
fish PCBs.

• Overestimating sediment recovery rates
minimizes differences in remedial
scenarios.

• Model emulation provides a mechanism
to evaluate both bias and precision of
models.
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Remedial decision making at large contaminated sediment sites with bioaccumulative contaminants often relies
on complex mechanistic models to forecast future concentrations and compare remedial alternatives. Remedial
decision-making for the Hudson River PCBs Superfund site involved predictions of future levels of PCBs in Upper
Hudson River (UHR) and Lower Hudson River (LHR) fish. This study appliedmodel emulation to evaluate the im-
pact of updated sediment concentrations on the original mechanistic model projections of time to reach risk-
based target thresholds infish in the LHR underMonitoredNatural Attenuation (MNA) and the selected dredging
remedy.
The model emulation approach used a combination of nonlinear and linear regression models to estimate UHR
water PCBs as a function of UHR sediment PCBs and to estimate fish concentrations in the LHR as a function of
UHR water PCBs, respectively. Model emulation captured temporal changes in sediment, water, and fish PCBs
predicted by the mechanistic model over the emulation period. The emulated model, using updated sediment
concentrations and a revised estimate of recovery rate, matched the trend in annual monitoring data for white
perch and largemouth bass in the LHR between 1997 and 2014.
Our best predictions based on the emulatedmodel indicate that the projected time to reach fish tissue risk-based
thresholds in the LHR will take decades longer than the original mechanistic model projections.
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1. Introduction
Fig. 1. Map showing the 321 km (200 mile) extent of the Hudson River PCBs Superfund
site from Hudson Falls (above the GE plant sites) to The Battery in New York City. The
left panel for the Upper Hudson shows the River Sections (RS) for the approximate
64 km (40 mile) remedial action area. The right panel for the Lower Hudson shows the
241 km (150 mile) tidal estuary with the fish model locations.
Remediation decisions at large contaminated sediment sites with
bioaccumulative contaminants often rely on highly parameterized
mechanistic models to make long-range temporal projections compar-
ing natural recovery and active remedial alternatives. At the Hudson
River PCBs Superfund site in New York (Fig. 1), the U.S. Environmental
Protection Agency (USEPA) used mechanistic contaminant fate and
transport models linked to bioaccumulation models to predict future
concentrations in fish (USEPA, 2000a, 2002). Model projections of tem-
poral changes in fish concentrations played an important role in the
comparative evaluation of remedial alternatives (USEPA, 2000b).

After USEPA's Record of Decision (ROD) (USEPA, 2002), extensive
remedial design sediment sampling revealed that concentrations of
PCBs in surface sediments were higher and more widespread than the
models had predicted (Field et al., 2009; USEPA, 2010, 2012). Addition-
ally, USEPA observed that PCB loads from the Upper Hudson River
(UHR) to the Lower Hudson River (LHR) prior to the start of dredging
in 2009 were substantially greater than predicted by the models and
showed little evidence of decline (USEPA, 2010). Because modeled
fish tissue PCB concentrations in the LHR are a function of PCB loads
from the UHR, these findings imply that time to reach target thresholds
for human consumption in fish in the LHR was underestimated by the
original mechanistic model projections.

In this study, we used statistical model emulation to condense rela-
tionships between inputs and outputs of USEPA's linked mechanistic
models to investigate sensitivity of model predictions to this new infor-
mation. Model emulation reduces complex mechanistic models into
computationally-efficient equations, dramatically reducing computation-
al demands and time and effort to recalibrate and rerun the mechanistic
models, while also maintaining a relevant and consistent representation
of the underlying relationships within them (Logemann et al., 2004).
The model emulator developed in this study was used to estimate new
outputs associated with modified and updated inputs defining a range
of remedial scenarios. The model emulator was also used to evaluate
the sensitivity of model predictions to variation and uncertainty in initial
sediment concentrations and different rates of natural recovery of surface
sediment concentrations.

2. Methods

2.1. Study area

The Hudson River PCBs Superfund site extends approximately
321 km (200miles) downstream from two General Electric (GE) capac-
itormanufacturing plants adjacent to the UHR to New York Harbor (Fig.
1). USEPA's ROD in 2002 (USEPA, 2002) called for dredging and moni-
tored natural recovery (MNA) of PCB contaminated UHR sediments ex-
tending 64 km upstream from the Federal Dam at Troy. This area was
divided into three main sections, River Sections (RS) 1 (Thompson Is-
land Pool), RS2 (Schuylerville), and RS3. Because of its overall length,
RS3 was subdivided into three modeling subsections RS3A (Stillwater),
RS3B (Waterford) and RS3C (Troy). USEPA did not evaluate or select a
remedy for the LHR tidal estuary (245 km between the Federal Dam
and the Battery in New York City).

2.2. Sample sediment data

Sediment samples collected for PCB analysis between 1976 and 1999
byUSEPA, GE andNewYork Statewere used during the Remedial Inves-
tigation and Feasibility Study (RI/FS) to assess risk and to predict future
concentrations under various remedial scenarios (USEPA, 2000b,
2000c). Surface sediments were generally collected from the top 5 cm,
although some penetrated as deep as 15 cm. Tri+ PCBs in water (aver-
age annual whole water concentrations), sediment and fish, the sum of
trichlorobiphenyl and higher chlorinated homologues, were used for
modeling because historic total PCB data did not effectively quantify
mono- and di-chlorobiphenyl PCBs (USEPA, 2000a; Connolly et al.,
2000). PCBs in fish tissue are primarily composed of Tri+ PCBs
(USEPA, 2000a, 2002).

Subsequent to USEPA's ROD, GE collected sediment samples (mostly
cores with some grab samples) from over 8000 locations throughout
the UHR supporting design and implementation of the selected remedy.
In RS1, most cores were collected on a triangular 24-meter (80-foot)
grid from the entire pool. In RS2 and RS3, cores were collected almost
exclusively within fine-grained sediments on triangular 24- or 50-
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meter grids (QEA, 2002, 2005, 2007). This samplingdesign is considered
approximately unbiased in RS1 and unbiased to fine-grained sediments
in RS2 and RS3.

2.2.1. Estimated pre-dredge concentrations
We averaged surface Tri+ PCB concentrations from design sampling

conducted from 2002 through 2005 representing pre-dredge surface
sediment concentrations in 2003. We used these averages for initial
conditions comparing updated MNA and remedial (REM) scenarios.

Most (94%) of the samples represented the top 5 cmand the remain-
der were from the top 15 cm or less. Average concentrations from sam-
ples including intervals up to 15 cm in depth differed inconsequentially
from samples composed of the 0–5 cm interval. The USEPAmechanistic
model simulated PCB fate and transport in the top 4 cm.

2.2.2. Estimated post-dredge surface sediment concentrations
Evaluating the change in surface sediment concentration following

remediation required an estimate of expected post-dredging Tri+ PCB
concentrations in sediment. Samples within the remedial design dredge
footprints (Arcadis, 2013) were assigned a post-dredge surface sediment
Tri+ PCB concentration of 0.25 mg/kg (USEPA, 2002) and arithmetic
averages for each river subsectionwere recalculated to represent the con-
centration in 2003, the year USEPA expected dredging to commence.

2.2.3. Estimated surface sediment concentration decay rate
Field et al. (2009) found that the exponential temporal decrease in

sediment PCBs (exponential decay rates) estimated from USEPA's
mechanistic models overstated the rate of natural recovery of surface
sediments. GE conducted large-scale sediment surveys throughout the
UHR in 1991 (O′Brien and Gere Engineers, Inc., 1993) and in 2002
through 2005 as part of remedial design (QEA, 2005, 2007). We com-
pared average surface concentrations from these two surveys and calcu-
lated an exponential decay rate for each river section (Table 1). The
average surface sediment Tri+ PCB concentration representing 2003
in each modeled river subsection was calculated, using only samples
from the top 5 cm matching the top 5 cm sampling interval collected
in 1991. In RS2 and RS3, these samples from 2003 can be considered
representative of cohesive sediment deposits and directly comparable
to samples from the cohesive sediment transects from 1991. By necessi-
ty, decay rate estimates for RS1 were based on comparison of remedial
design samples, representing both cohesive and non-cohesive sedi-
ments, with samples representing cohesive sediments collected in
1991. Because cohesive sediments tended to have higher than average
Tri+ PCB concentrations, the estimated decay rate is likely to overstate
the actual rate. The overall average decay rate and confidence interval
(CI) was used to guide selection of model emulation scenarios.
Table 1
Average surface (top 5 cm) sediment Tri+ PCB concentration (mg/kg) in 1991 and 2003
and estimated exponential decay rate.

Model subsection Cohesive sediment
1991a

Updated sediment
2003b

Exponential
decay

1 20
(227)c

16.9 1.4%
(3414)c

2 18
(33)

14.7 1.7%
(1539)

3A 4.3
(103)

3.4 2.0%
(2129)

3B 5.7
(30)

5.6 0.1%
(682)

Average 1.3%
95% confidence
interval (CI)

(−0.1% to 2.6%)

a O′Brien and Gere Engineers, Inc. (1993).
b Includes cohesive and non-cohesive sediments in River Section 1 and cohesive only in

River Sections 2 and 3.
c Number of samples.
2.3. Selected remedy

The selected remedy, initiated in 2009, included both MNA and ac-
tive remediation (dredging and backfill or capping followed by MNA)
in the UHR. Sediment remediation areas were defined primarily on
two criteria: surface concentrations (defined by USEPA as the top
30 cm) and mass-per-unit area (MPA), a measure of PCB inventory. Re-
mediation areas were defined as follows: for RS1, a surface concentra-
tion of 10 mg/kg Tri+ PCBs in the surface or an MPA of 3 g/m2 Tri+
PCBs; for RS2 and RS3, a surface concentration of 30 mg/kg Tri+ PCBs
or anMPA of 10 g/m2 Tri+ PCBs. Source control near GE plant sites, ap-
proximately 3 km upstream of the modeled area, was assumed under
both MNA and active remediation scenarios.

2.4. Mechanistic model framework

The mechanistic numerical models developed by USEPA predicted
sediment, water and fish Tri+ PCB concentrations in the RS1, RS2,
RS3A, and RS3B reaches of the UHR (USEPA, 2000a). GE also developed
similar mechanistic models that were generally consistent with those
developed by USEPA (QEA, 1999a). USEPA used the projections of PCB
load from the UHR (RS3B) to the LHR from the Upper Hudson River
Toxic Chemical Model (HUDTOX) as input to the Farley model (Farley,
1999; USEPA, 1999) to calculate sediment and water concentrations in
the LHR. Output from the Farley model was then used as input to
USEPA's FISHRAND model, a mechanistic food web model, to predict
Tri+ PCB concentrations in four species of fish (white perch, brown
bullhead, largemouth bass, and yellow perch) at four LHR locations
downstream of the Federal Dam at Troy (RM152 (Albany/Troy) (river
kilometer [RK] 245), RM113 (Catskill) (RK 182), RM90 (Kingston) (RK
145), and RM50 (West Point) (RK 80) USEPA, 2002). While PCB-
contaminated sediment in the UHR was the primary focus for remedial
alternatives, reduction in PCB load to the LHR was a major remedial ac-
tion objective and was expected to result in a reduction of PCB concen-
trations in lower river fish. Because initial PCB concentrations in LHR
fish were lower than UHR fish, model projections indicated that LHR
fish would reach human health risk management objectives (thresh-
olds) much sooner than UHR fish.

We captured mechanistic model output by digitizing Tri+ PCB time
series from the USEPA mechanistic model output for MNA and the se-
lected remedy, including sediment (USEPA, 2000b: Figures 6-24, 6-26,
6-28, and 6-30; USEPA, 2002: Figures 363150-1, 3, 5, and 7) and water
(USEPA, 2002: Figures 363150-10, -11, -12, and -13) for fourmodel sub-
sections in the UHR and fish at four locations in the LHR (USEPA, 2002:
Figures 313787-2, 3, 4, and 5). Digitizing was accomplished using Plot
Digitizer, a shareware Java program used to digitize scanned plots. Dig-
itized sediment, water, and fish Tri+ PCBs time serieswere interpolated
to equally-spaced annual time steps so that modeled values for each
media could be paired temporally. Interpolation was conducted using
linear interpolation using MATLAB© software (MATLAB 8.6, Release
2015b, TheMathWorks Inc., Natick, MA, 2000). These time series simu-
lated scenarios assumed dredgingwould begin in 2003 or 2004 and end
by 2010 for the selected remedy.

2.5. Model emulation

Digitized input and output from mechanistic model projections pro-
vided a basis for using nonlinear optimization to fit a simplified mathe-
matical model of water concentrations (Cw) in each UHR subsection as a
function of 1) original and updated sediment Tri+ PCBs (Cs), 2) upstream
source input (2 ng/L or 0 ng/L), 3) area of subsection, and 4) distance from
the downstream dam in each subsection (see Supplementary Fig. 1). The
emulatedmodel structure is a simplified parameter version of the USEPA
mechanisticmodel including four one-dimensionalmodel compartments
representing each river subsection.
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2.5.1. Model emulator
The model emulator represented each of the four river subsections

with one model compartment composed of three terms representing
PCB transfer to or from the water column: 1) upstream source minus
deposition; 2) release/resuspension minus deposition of a fraction of
these resuspended solids; and 3) post-dredge resuspension of disturbed
residuals. The general form of the emulator within the ith subsection is:

Water Column Loadi¼ Water Column Loadi−1−Depositionið Þ
þ Resuspensioni−Depositionið ÞþPost Dredge Resuspensioni:

ð1Þ

Each model compartment (i.e. river subsection) represents an
impounded pool within which flows are generally laminar. Deposition
of PCBs from the water column to the sediment bed was assumed pro-
portional to distance traveled within each subsection with constant de-
position rate per unit distance (gi, i=1,2,3,4) within river segments.

Release/resuspension of sediment PCBs to thewater columnwas as-
sumed to be directly proportional to average PCB concentration and
area of PCB-containing cohesive sediments per river subsection with
net sediment to water transfer coefficients (γi; i=1,2,3,4) assumed
constant through time.

Post-dredging sediment residuals were assumed to bemore suscep-
tible to resuspension with sediment to water transfer coefficients
(βi; i=1,2,3,4) proportional to pre-dredge PCB concentrations and
area dredged. These lower density disturbed residuals were assumed
to decline with time at an 8% rate as they either flushed downstream,
or became more consolidated and less susceptible to erosion.

Lower Hudson River fish Tri+ PCBs (Cf) were predicted from
modeled water column Tri+ PCB concentrations (Cw) from themecha-
nistic model output for RS3B using linear regression.
2.5.2. Emulator calibration
Net contaminant transfer coefficients were estimated byminimizing

root mean squared error between temporally paired emulated and
mechanisticmodeled Tri+PCB concentrations inwater. The paired sed-
iment and water time series for each of the 4 river sections spanned
30 years (2005–2034) for MNA and 25 years (2010–2034) for REM1
(the selected remedy) and each remedial scenariowasmodeled assum-
ing: 1) partial source control with Tri+ PCB load decreasing from
0.16 kg/d to 0.0256 kg/d by the year 2005; and 2) complete source con-
trol, assuming upstream Tri+ PCB load would decrease from 0.16 kg/d
to 0.0 kg/d (USEPA, 2000b). These 55 time steps and 4 river sections
and 2 upstream load scenarios resulted in a system of 440 simultaneous
nonlinear equations with 12 unknown net transfer coefficients which
were solved using nonlinear optimization using MATLAB© scientific
software (The MathWorks 2015). Full mathematical detail is provided
in Appendix A. The estimated coefficients are summarized in Table S-
1. Mechanistic water column Tri+ PCB concentrations from RS3B
were treated as predictors of LHR fish Tri+ PCB concentrations and
were calibrated by linear regression. Projections of LHR fish tissue
Tri+ PCBswere calculated by applying this regressionmodel to emulat-
ed water Tri+ PCB concentrations at the downstream end of RS3B.

Although we calibrated the model emulation to both upstream load
scenarios, we found only small differences in future model projections
of primary interest, so we focused on scenarios with average upstream
source concentrations of 0.0256 kg/d (approximately 2 ng/L Tri+
PCB). This is reasonable becausemeasuredwater columnTri+ PCB con-
centrations upstream of RS1 have been approximately 2 ng/L Tri+ PCB
since 2004 (Farrar, 2011; USEPA, 2010). For the calibration step, we se-
lected 2005 as the initial year for MNA because mechanistic model pro-
jections reached baseline concentrations of 2 ng/L Tri+ PCBs in that
year. Initial year 2010 was selected for REM1 because dredging was an-
ticipated to be completed by that time.
2.5.3. Uncertainty
Analytical statistical theory for mechanistic simulation models is

generally intractable due to their complexity, so statistical inference to
model predictions is often limited. In situations where computer run-
time for simulation models is relatively short, statistical inference may
be available through Monte Carlo simulation or Bayesian Markov
Chain Monte Carlo Methods (Raftery et al., 1995; Smith, 1994; USEPA,
1994). These examples have the commonality that mechanistic model
equations are relatively simple and can be run repeatedly, a necessity
for both Bayesian and Monte Carlo methods. Because linked fate and
transport models often require extremely long run-times (Glaser and
Bridges, 2007), Monte Carlo or Bayesian simulation is not directly appli-
cable. Model emulation provides a solution to this computational prob-
lem by providing a surrogate model that can be run repeatedly within a
reasonable period of time, while maintaining essential elements of the
physical processes embodied in the mechanistic model. This advance-
ment provides a mechanism to evaluate both bias and precision of
models, providing risk managers with a more complete description of
the reliability of predictions.

2.5.3.1. Bias.Our primary objectivewas to applymodel emulation deter-
ministically to evaluate bias in modeled forecasts associated with
change in initial sediment bed Tri+ PCB concentrations. Future Tri+
PCB concentrations in sediment, water, and fish tissue were estimated
using updated sediment Tri+ PCB concentrations reflecting averages
from comprehensive remedial design sampling. Changes in these values
associatedwith updated estimates of temporal decay rates in sediments
were also considered. Using these modified model inputs, future Tri+
PCB concentrations in LHR fish were re-calculated and compared to
human health total PCB risk thresholds of 0.05 mg/kg, 0.2 mg/kg and
0.4 mg/kg, representing levels protective of fish consumers eating one
meal per week, one meal per month, and one meal every two months
respectively (USEPA, 2002). USEPA considered Tri+ PCB and total PCB
concentrations interchangeable in fish (USEPA, 2002).

These estimates representing central tendency or best estimates up-
dated for new sediment surface and decay rates were compared with
the original mechanistic model estimates.

2.5.3.2. Precision. We also estimated precision of model forecasts using
parametric Monte Carlo simulation for auto-correlated time series of
sediment Tri+ PCB concentrations. Synthetic sediment time series
were generated that reproduced temporal autocorrelation patterns
and between river section cross correlations similar to those in original
EPA mechanistic modeled sediment time series. Each sediment Tri+
PCB concentration time serieswas simulated from a lognormal distribu-
tion with mean concentration

Ci tð Þ ¼ C0ie−ktþεi tð Þ

where C0i is the initial sediment Tri+ PCB concentration in the ith sub-
section, and k is the PCB concentration decay rate. Because the sediment
decay rate was estimated from just two points in time (1991 and 2003),
we viewed this as a relatively uncertain parameter and as such investi-
gated a relatively wide range of plausible decay rates uniformly distrib-
uted on the interval from 0.02 to 0.05. The residual time series εi(t) was
simulated as a normally distributed mean zero correlated random vari-
able with autocorrelation and variance estimated from the residuals of
an exponentialfit to themechanisticmodel time series. [Themathemat-
ical details of this probability model are summarized in Appendix B.]

ThisMonte Carlo simulation procedure involved four steps; 1) simu-
lating four normally distributed auto-correlated sediment time series
(εi(t) , i=1,2 ,3 ,4), 2) randomly selecting a uniformly distributed
decay coefficient between 0.02 and 0.05, 3) calculating Ci(t) and 4) ap-
plying the model emulator, to these four sediment time series, produc-
ing four corresponding Tri+ PCB time series for water and finally a
synthetic fish tissue Tri+ PCB time series. These four steps were
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repeated 1000 times, and the fish Tri+ PCB time series were plotted,
and the time to reach risk thresholds was calculated for each of the
1000 synthetic time series.

2.6. Remedial scenarios evaluated

Model emulation was used to evaluate the following remedial sce-
narios: (1) Mechanistic model projections for sediment PCB concentra-
tions under Monitored Natural Attenuation (MNA1) and the selected
remedy (REM1); (2) MNA (MNA2) and the selected remedy with up-
dated sediment PCBs (REM2); and (3) An alternative remedial scenario
(REM3), not considered in the ROD, that applies the RS1 cleanup target
levels to RS2 and RS3 with updated sediment PCBs. For each of these
scenarios, we applied both the original (8%) and the updated (3%) rate
of exponential decrease in surface sediment PCBs.

3. Results

3.1. Model emulator

3.1.1. UHR sediment to water
Fitting a set of nonlinear and linear regression models using inputs

and outputs from the original mechanistic models provided a computa-
tionally simple means to reproduce the USEPA water column model
Tri+ PCB results under MNA and selected remedy scenarios. Themech-
anistic model developed by USEPA predicted sediment and water Tri+
PCB concentrations in RS1, RS2, RS3A and RS3B that were used to com-
pare remedial alternatives.

The four-compartment nonlinear model emulator with twelve pa-
rameters linking PCB transfer from sediment to water explained 98%
(R2= 0.98) of the variation inmechanistic modeled water column con-
centration over the 30 year projection for MNA and the 25 year projec-
tion for REM1 (Fig. 2). This demonstrates that the model emulator
successfully captures the changes in sediment andwater concentrations
predicted by the mechanistic model for MNA and for the selected rem-
edy in the UHR model sections over the emulation period.

3.1.2. UHR water to LHR fish
The mechanistic model predicted Tri+ PCB concentrations in four

species of fish (white perch, brown bullhead, largemouth bass, and yel-
low perch) at four locations in the LHR (USEPA, 2002). Fish tissue Tri+
PCB concentrations in the LHR below the Federal Dam (RM152) had a
strong linear relationship to water column Tri+ PCB at Waterford
Fig. 2. Emulated vs original mechanistic model projected Tri+ PCB (ng/l) water
concentrations by river subsections on the Upper Hudson River for MNA and the
selected remedy.
(RS3B) in the UHR for all four modeled species (R2 ≥ 0.90, Fig. 3). This
linear relationship between water Tri+ PCB at RS3B and LHR fish con-
centrations in the mechanistic model output provided the basis for the
model emulation of fish PCBs.

Modeled fish tissue Tri+ PCBs for all four species at the other
three LHR locations (RM113, RM90 and RM50) were also strongly
linearly related to Tri+ PCB concentrations at Waterford, showing
that the mechanistic model linking water to fish was effectively lin-
ear [Supplementary Table S-1 lists the regression coefficients and
standard errors for white perch, brown bullhead, largemouth bass,
and yellow perch at all four LHR locations].

Mechanistic food web model predictions of fish tissue concentra-
tions for all four species at RM152 are strongly linearly related
(R2 N 0.99; Supplementary Fig. 2). Largemouth bass are predicted to
have higher PCB concentrations than white perch, while brown bull-
head and yellow perch are predicted to have lower concentrations.

Mechanistic model projections of white perch Tri+ PCB concentra-
tions at RM113, 90, and 50 are also proportional to white perch Tri+
PCB concentrations at RM152 (R2 N 0.96) and decrease with distance
from the Federal Dam (Supplementary Fig. 3). The other three species
had similar proportional relationships (not shown).

Emulation equations, with estimated coefficients, were applied to
new model inputs such as new average PCB concentrations and decay
rates in sediment (see Table A.2 for nonlinear regression coefficients).

The model emulation combined the nonlinear regression model be-
tween sediment andwater with these linear regressions linking fish tis-
sue and water column Tri+ PCBs to predict fish tissue Tri+ PCBs in the
LHR from sediment Tri+ PCB concentrations in the four upper river sec-
tions. A comparison between themechanisticmodel projections of Tri+
PCBs for all four species at RM152 and the emulation results are shown
in Fig. 4 (R2 = 0.92). Emulated model concentrations for largemouth
bass and white perch tended to underestimate the mechanistic model
at the higher concentrations (early in the time period).
3.1.3. Updated surface sediment concentrations
The average Tri+ PCB concentration in sediment samples from the

top 5 cm in 2003, exceeded the upper bound of the mechanistic
model predictions (representing the top 4 cm) under MNA (MNA1)
and were more than twice the mean concentration predicted for cohe-
sive sediments in all fourmodel subsections of the UHR (Table 2; Fig. 5).
The GE mechanistic model for RS1 similarly understated average mea-
sured sediment PCBs in 2003 (QEA, 1999a).

The projected Tri+ PCBs concentrations in surface sediment under
USEPA's natural recovery scenarios declined with an approximate 8%
annualized exponential decay rate (USEPA, 2000a). Using the cohesive
sediment data from the 1991 transect survey and the sediment data col-
lected in 2003, we estimated the decay rate over the twelve year period
to be 2% or lower in all four model sections (Table 1) with an average
decay rate of 1.3% (95% CI = −0.1% to 2.6%). The 3% rate selected for
simulated scenarios was a round number representing a reasonable
upper bound for calculated decay rates shown in Table 1.

Dredging was expected to begin in 2003 and require 6 years to com-
plete (USEPA, 2000b). In the emulation, we treated 2010 as the first
post-dredging year. We assumed that natural recovery would continue
outside the dredging footprint while dredging occurred. To estimate
surface sediment concentrations in the initial post-dredging year, need-
ed for simulating post-dredging scenarios, exponential decay rates of 8%
and 3% were applied to the average surface concentration estimated
frompre-design sampling in 2003. Post-dredging river-subsection aver-
ageswere then calculated accounting for reduced concentrations due to
dredging and backfilling (Table 2).

The post-dredging surface Tri+ PCB concentrations estimated for
2010 were also considerably higher than predicted by the USEPA
models. In RS2 and RS3, where the target cleanup levels were at least
a factor of 3 higher than for RS1, estimated post-dredging surface



Fig. 3.Mechanisticmodel Tri+ PCBwater concentrations (ng/l) atWaterford (RS3B) vs tissue concentrations (mg/kg) forwhite perch, brownbullhead, largemouth bass, and yellowperch
from RM152 for MNA and the selected remedy.

Fig. 4. Emulated vs originalmechanistic model projected Tri+ PCB (mg/kg) fish concentrations for white perch, brown bullhead, largemouth bass, and yellow perch from RM152 forMNA
and the selected remedy.

494 L.J. Field et al. / Science of the Total Environment 557–558 (2016) 489–501



Table 2
Average Tri+ PCB concentrations (mg/kg) in surface sediment by river subsection under
different remedial scenarios and rate of exponential decay in concentration between
2003 and 2010.

River
subsection

Remedial scenario

Reach MNA1a MNA2b REM1c REM2d REM2e REM3f

Year 2003 2003 2010 2010 2010 2010

Decay 8% 3% 3%

RS1 Thompson
Island Pool

8.5 16.9 0.5 0.8 1.1 1.1

RS2 Schuylerville 6.5 14.7 1.0 2.8 3.9 1.0
RS3A Stillwater 1.3 3.7 0.5 1.4 2.0 1.0
RS3B Waterford 1.0 6.0 0.4 1.9 2.7 0.9

a MNA1: Mechanistic model predictions for Monitored Natural Attenuation for sediment
concentrations in 2003.

b MNA2: Measured sediment concentrations in 2003 based on updated data.
c REM1: Mechanistic model predictions for the selected remedy for sediment concentra-

tions post-remediation (2010).
d REM2: Estimated concentrations for the selected remedy post-remediation (2010)

based on updated data, assuming 8% exponential decay since 2003.
e REM2: Estimated concentrations for selected remedy post-remediation (2010) based

on updated data, assuming 3% exponential decay since 2003.
f REM3: Estimated post-remediation (2010) concentrations for hypothetical remedial

scenario that applies RS1 cleanup levels to RS2 and RS3, based on updated data and as-
suming 3% exponential decay since 2003.
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concentrations, based on updated data, are about 5 times higher than
previously predicted based on the mechanistic model.

3.1.4. Emulated models with updated surface sediment concentrations pre-
and post-removal

The effect of a lower natural recovery rate (3%) in sediment was also
evaluated in combination with updated sediment surface Tri+ PCBs
concentration. This updated decay rate is more consistent with the ob-
served changes in surface concentrations during the 12 year period be-
tween the 1991 transect survey and the remedial design data collected
in 2003, while not being overly conservative with respect to anticipated
decay rates. The mechanistic model profile using USEPA's original pro-
jections of sediment concentrations underMNA (MNA1) and the select-
ed remedy (REM1) was compared to the emulated model projections
using an exponential decay rate of 8%. The computed exponential
decay function closely matches the original model projections (Fig. 6),
Fig. 5.Mechanistic model predictions of average and upper bound (error bars) surface sedimen
concentrations (right panel) compared to estimated river subsection average pre- and post-dred
2005 (approximately 2003).
supporting the use of an exponential decay model for emulated results
representing other decay rates (e.g., 3%) for surface sediment concen-
trations under MNA2, REM2 and REM3.

The emulated models projected LHR fish Tri+ PCBs using updated
surface sediment concentrations (i.e., based on the 2003 pre-design
sampling) as input. Estimates of pre- and post-removal surface sedi-
ment concentrations derived from the extensive remedial design sedi-
ment dataset (Table 2) provided more accurate characterization of
surface Tri+ PCB concentrations prior to initiation of remediation.

Fig. 7 illustrates the difference between USEPA's original scenarios
(MNA1 and REM1 with 8% decay rates) and updated scenarios (MNA2,
REM2 and REM3 with updated sediment and 3% decay rates) for Tri+
PCB concentrations in white perch at RM152. The emulated LHR fish
Tri+ PCB concentrations (MNA2, REM2, REM3) were substantively
higher than USEPA's original mechanistic model predictions for MNA1
and REM1 and remain elevated over a much longer period. The updated
sediment surface and decay rates for MNA2, REM2, and REM3 provide
greater discrimination between remedial alternatives than in the evalua-
tion of remedial alternatives prior to remedy selection.

The model emulator was used to estimate the number of years nec-
essary to reach USEPA risk thresholds in white perch at RM152 under
original modeled scenarios (MNA1, REM1) with the number of years
to reach thresholds based on updated scenarios (MNA2, REM2, REM3)
using two sediment exponential decay rates: 8% (mechanistic model)
and 3% (upper bound of empirical estimate). Fig. 8 displays the number
of years predicted to attain the 0.4 and 0.2 mg/kg Tri+ PCB thresholds
for white perch at RM152 under remedial scenarios REM1, REM2 and
REM3, each with 3% and 8% exponential decay rates. For all scenarios,
using the updated sediment concentrations the time for fish tissue
Tri+ PCB concentrations to reach remedial action objectives of 0.4 and
0.2 mg/kg is estimated to be substantively longer than originally pre-
dicted. For the original selected remedy (REM1) under either 8% or 3%
decay assumptions, white perch at RM152 were projected to reach the
0.4mg/kg threshold before or immediately after dredgingwas complet-
ed.With updated sediment concentrations (REM2) and 3% decay, white
perch at RM152 were estimated to reach 0.2 mg/kg more than six de-
cades longer than the original mechanistic model projections. The
REM3 scenario greatly reduced the time to thresholds compared to
REM2, but still longer than the original model predictions (REM1) [see
Supplementary Tables S-2 and S-3 for time to 0.2 and 0.4mg/kg thresh-
olds for all scenarios, species, and locations].
t (top 4 cm) Tri+ PCB concentrations for 2003 pre-dredging (left panel) and post-dredge
ge sediment (top 5 cm) concentrations from remedial design sampling between 2002 and



Fig. 6. Emulatedmodel projections forwhite perch Tri+PCB concentrations (mg/kg) from
RM152 under MNA (MNA1) and the selected remedy (REM1) comparing the original
mechanistic model (square and circle) results with simulated exponential decay rate of
8% (solid and dashed line).
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3.2. Precision

Precision of emulator-based Tri+ PCB concentration in fish tissue
was estimated using Monte Carlo simulation of equally likely sediment
time-series with a range of decay rates (2% to 5%) and with statistical
properties matching original mechanistic model sediment time series.
The emulator was applied to these time-series, propagating uncertainty
in sediment Tri+ PCB concentrations through to corresponding uncer-
tainty in output Tri+ PCB concentrations in white perch at RM152.
Fig. 9 shows the Monte Carlo distribution of future trajectories of fish
tissue Tri+ PCB concentration, illustrating the uncertainty in estimates
of the number of years needed to reach risk thresholds. The estimated
number of years to thresholds were estimated to be 27 (95% CI: 19,
43), 49 (95% CI: 35, 77) and 102 (95% CI: 73, 162) for the 0.4 mg/kg,
0.2 mg/kg and 0.05 mg/kg risk based thresholds respectively.
Fig. 7. Emulated model projections for white perch Tri+ PCB concentrations (mg/kg, wet
weight) from RM152 for MNA (squares) and the selected remedy (REM) (circles)
comparing the time to reach risk thresholds of 0.2 and 0.05 mg/kg at 8% (open symbols)
and 3% (filled symbols) exponential decay rates for original mechanistic model
concentrations (MNA1, REM1), updated sediment concentrations from remedial design
sampling (MNA2, REM2), and hypothetical scenario that applies the RS1 target cleanup
levels to RS2 and RS3 using updated sediment concentrations (REM3) (triangles).
4. Discussion

4.1. Interpretation of key findings

4.1.1. Model emulation
Model emulation provides a fast and inexpensive way to efficiently

calculate outputs from inputs for complex mechanistic models, while
retaining underlying physics-based properties. The method of model
emulation is relatively new, with recent developments in global climate
modeling stimulating the need to quantify uncertainty in complex
mechanistic simulation models (Castruccio et al., 2014). An approach
similar to ours was proposed by Margvelashvili et al. (2010) emulating
a linked one-dimensional sediment/contaminant and three dimension-
al sediment transport model in the South-East Tasmanian coast of
Australia.

For the Hudson River, sediment fate and transport model emulation
successfully reproducedmechanisticmodel projections of sediment and
water Tri+ PCB concentrations in theUHR and fish Tri+ PCB concentra-
tions in the LHR. These results demonstrate that essential elements of
the mechanistic mass balance model were captured by the emulator
and support its validity for re-visiting temporal projections of fish tissue
concentrations in the LHR with updated model inputs. Use of the emu-
lator allowed us to update original predictionswithout necessitating ac-
cess to computer codes that are often not readily available to third party
investigators. Model emulation may also reduce the time to update
complicated simulation models, because recalibration procedures may
also entail re-evaluation of the physical mechanisms of themodel itself.
We believe these features of model emulation could enhance the trans-
parency and accountability of the comparisons of alternative remedial
scenarios.

4.1.2. Surface sediment concentrations and natural recovery
Extensive systematic remedial design sampling of surface sedi-

ment conducted to delineate dredge areas showed that the mecha-
nistic model predictions of surface sediment concentrations
underestimated surface PCBs under MNA and post-remediation sce-
narios and overestimated the rate of decrease in surface sediment
PCBs. The higher than predicted post-remediation concentrations
primarily resulted from high concentrations of PCBs in surface sedi-
ment adjacent to the planned dredge areas (Field et al., 2011).

Multiple reasons are possible for the mechanistic model under-
estimating surface sediment Tri+ PCBs, but processes that resulted in
an overstated effective recovery rate (8%, MNA1 scenario) (as compared
to our empirical estimate of b3% fromdata only available after the original
model was developed) should be considered. Overestimated natural re-
covery rates are not unique to this model or this situation. For example,
models developed by GE for the UHR had a similar effective decay rate
(QEA, 1999a). Rates of recovery derived from data collected in the
1970s to mid-1980s have also led to overly optimistic estimates of rates
of decline. Consistent with our findings, PCB concentrations in Great
Lakes salmonids declined at high double digit rates in the 1970s and
1980s, but the inclusion of more recent data showed that declines have
slowed to the low single digits in the 1990s and later (Rasmussen et al.,
2014). Examinationof PCBdata from the1970s to2000s in several species
of Great Lakesfish suggest that the estimates of contaminant declinewere
overly optimistic and responses to mitigation weaker than anticipated
(Carlson et al., 2010; Sadraddini et al., 2011).

4.1.3. Estimated rate of recovery and fish concentrations
Monitoring data for adult white perch collected annually at RM152

in the late spring between 1997 and 2014 (NOAA, 2015) were normal-
ized to 3% lipid for consistency with the USEPA FISHRAND model and
overlaid on updated emulated model predictions for MNA (MNA2) at
3% and MNA1 at 8% decay. The original mechanistic model understates
the measured tissue concentrations, whereas the updated predictions
using 3% decay are more consistent with the measured data (Fig. 10).



Fig. 8. Emulatedmodel projections of the number of years to reach 0.4 and 0.2mg/kg Tri+ PCB thresholds for white perch at RM152 under three remedial scenarios and two exponential
decay rates, 3% and 8%: the selected remedy with original initial sediment concentrations (REM1), the selected remedy with updated initial sediment concentrations (REM2), and a
hypothetical scenario that applies the RS1 target cleanup levels to RS2 and RS3 using updated sediment concentrations (REM3).
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It could be argued that this apparently lower than expected decay rate
in LHR white perch tissue concentrations is an artifact of Tri+ PCB re-
leases from UHR dredging which began in 2009. However, the updated
predictions equally describe trends in monitoring data collected be-
tween 1997 and 2009 (Fig. 10), supporting the lower than anticipated
3% recovery rate. It should also be noted that, due to a change in fishpro-
cessing protocol between 2004 and 2013 (USEPA, 2015), lipid-adjusted
Tri+ PCBs shown in Fig. 10 may understate actual concentrations dur-
ing that time period. Adjusting these data for this change in protocol
would shift Tri+ PCBs upward, suggesting even slower recovery rates,
again supporting our finding that recovery rates are b8%. Similar results
were observed for largemouth bass (Supplementary Fig. S-4). Themon-
itoring data do not definitively identify the correct decay rate, but 3% is a
demonstrably better fit to the data than 8%.

4.2. Use of model emulation to evaluate uncertainty

Resource managers need to account for uncertainty in modeled
forecasts to avoid selecting overly optimistic, or pessimistic, remedial
options. For relatively simple measurement endpoints, statistical analy-
ses are regularly used to quantify uncertainty. For example, uncertainty
in exposure estimates is generally quantified using 95% confidence
limits. When more complicated functions of the data are involved, the
statisticalmethods of bootstrapping (Efron, 1979) andMonte Carlo sim-
ulation (Manly, 1991; USEPA, 1997) are used to describe uncertainty
distributions. Bootstrap and Monte Carlo methods involve selecting
equation inputs from statistical distributions to which model equations
Fig. 9. Monte Carlo distribution of Tri+ PCB concentrations (mg/kg) in white perch at
RM152 using the emulated model for the selected remedy with updated sediment
concentrations and exponential decay rates in sediment Tri+ PCBs between 2 and 5%.
are applied, producing distributions of model outputs. Traditional met-
rics of uncertainty, such as confidence intervals or percentiles, are calcu-
lated directly from the output distributions. The time required to run
linked sediment fate and transport models precludes direct application
of bootstrap andMonte Carlomethods, because themodel runsmust be
repeated many times to develop statistical distributions of output
parameters.

Ourmodel emulation provides a novel approach to extend the utility
of complex linked sediment transport, contaminant fate and transport,
and bioaccumulationmodels for theHudson River by creating a compu-
tational shortcut that reliably predicts mechanistic model outputs from
imperfectly known model inputs. By varying inputs to the model emu-
lator (i.e. sediment concentrations and decay rates) within reasonably
constrained ranges, the uncertainty distributions of emulated outputs
were developed, simulating the uncertainty distributions of the mecha-
nistic model. Importantly, because the mechanistic model is based on
linked physical processes thought to be predictive, the model emulator
can also be considered to be similarly predictive. The use of model em-
ulation allowed for the investigation of the sensitivity of model outputs
to uncertainty in model inputs, including both bias and precision.

4.2.1. Bias
The emulator was used in a deterministic way by modifying model

inputs. The resulting mechanistic model forecasts were highly sensitive
Fig. 10. Emulated model (dotted line) for white perch Tri+ PCB (mg/kg; normalized to
3.0% lipid) from RM152 with 3% exponential decay compared to monitoring data for
white perch between 1997 and 2014 (circles) and risk thresholds (0.2 and 0.4 mg/kg
PCBs) (horizontal dashed lines). Dredging began in 2009 and was completed in 2015.
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to changes (e.g., bias) in initial sediment bed Tri+ PCB concentrations
and temporal trend rates, but less so to variation in loads from upstream
sources. This paper focuses on the scenario with upstream input con-
centration decaying to 2 ng/L Tri+ PCBs by 2005, which is consistent
with recentmonitoring data (USEPA, 2010). Themechanisticmodels in-
dicated that recovery eventually would be limited with a 2 ng/L up-
stream baseline load compared to complete source control (upstream
load= 0 ng/L). However, the emulated model for 0 upstream load (re-
sults not shown) did not differ much from the 2 ng/L model during the
emulation period, possibly because initial higher than expected sedi-
ment concentrations and lower than expected decay rates mask rela-
tively small differences due to upstream loads.

Updating input sediment Tri+ PCB concentrations to reflect more
comprehensive, recent sampling led to the realization that concentra-
tions observed in 2003 sample data exceeded the deterministic upper
bound developed from themechanistic model. Updating input bed sed-
iment concentrationswith this new information led to longer estimated
recovery times for LHR fish, indicating reduced apparent benefit fore-
casted for the selected remedy.

The rate of natural recovery ismore uncertain than surface sediment
concentrations in 2003 because recovery estimates require compari-
sons with data from older sampling programs, which were based on
subjective sampling designs and much smaller sample sizes. Although
no completely unbiased sediment samplingprogramhad been conduct-
ed prior to 2003, the 1991 UHR transect survey (O′Brien and Gere
Engineers, Inc., 1993) was closest to an unbiased systematic sampling
study with spatially extensive coverage and many sampling locations
distributed throughout the UHR. Lack of unbiased estimates of mean
surface concentration atmultiple points in time limit the potential to ac-
curately estimate the natural recovery rate. For our study of bias in the
decay rates, we used 3% because, while we believe that our sediment
decay rate estimate is the best available, the fact that it is based on
just two time steps and because only one time step is based on a
completely unbiased sampling design, the estimate of 1.3% exponential
decay is highly uncertain. Therefore, for evaluating bias, we used 3% as a
value that is meaningfully b8%, yet not overly pessimistic. Such subjec-
tivity about sediment recovery rates, at one of the most heavily studied
Superfund sites in the United States, is disconcerting and should stimu-
late a focus on improving the estimate of the rate of recovery at other
contaminated sites where remedial alternatives are being evaluated.

4.2.2. Precision
The precision of model forecasts was estimated using a parametric

Monte Carlo approach to simulate autocorrelated time series of bed sed-
iment Tri+ PCB concentrations. Sediment concentration inputs were
modeled as a first order (i.e. exponential) decay function with tempo-
rally correlated residual errors. Application of the model emulator to
the 1000 sets of simulated sediment time series resulted in correspond-
ing ensembles of water and fish tissue time series. As discussed above,
temporal recovery rates at the Hudson River site are highly uncertain,
so the effects of this uncertainty were incorporated into this analysis
by simulating first order decay rates as a range of values uniformly dis-
tributed from 2% to 5%. This range was chosen subjectively, but none-
theless the analysis illustrated that even modest uncertainty in decay
rates can translate into a wide range of estimated times to recovery
(Fig. 8). This result indicates that reliable estimates of exponential
decay rates in contaminatedmedia are required for reliable remedial al-
ternatives comparisons.

Each of the 1000 simulated time series varies through time around
its selected exponential decay rate. When data are strongly correlated
temporally, concentration time series may wander far from the expo-
nential decay curve for significant periods of time, leading to greater un-
certainty in estimates of time to threshold values. Although resultswere
not shown, the Monte-Carlo procedure was used to evaluate effects of
temporal autocorrelation by holding the exponential decay rate fixed
across all 1000 simulations. This analysis showed that times to reach
threshold concentrations were insensitive to these types of excursions
of sediment concentrations due to autocorrelation.

If large linked contaminant fate and transport models are to be used
for remedial alternatives evaluation, supporting sediment data appro-
priate for estimating temporal decay rates are necessary. Frequently,
high resolution geochronology sediment cores are used to deduce sedi-
mentation rates and indirectly extrapolate natural recovery rates that
are often extrapolated over large spatial regions. However, exposures
to biotic receptors are generally assumed proportional to spatial aver-
ages, which may not be adequately represented by a small number of
high resolution cores. This problem is likely exacerbated by the tenden-
cy for investigators to rely on high resolution cores with interpretable
geochronology, which typically are collected in low energy areas with
continuous deposition and greater than average sedimentation rates
that are not representative of site conditions (USEPA, 1998; QEA,
1999b). Those rates, which could be considered to represent an upper
bound on sedimentation rates, are then extrapolated over large areas
with varying energy regimes and less interpretable geochronologies.

The model emulation approach was useful for quantifying bias and
precision ofmechanisticmodel forecasts of fish tissue Tri+ PCB concen-
trations at the Hudson River. Further application of the method is rec-
ommended at contaminated sediment sites where large contaminant
fate and transport models have been developed for use in remedial
decision-making. Model emulation at other large sites should provide
further support for utilizing this approach when additional site data be-
come available to evaluate model projections.

4.3. Improving model calibration and validation

Following the approach used by Castruccio et al. (2014), model em-
ulation can also improve the objectivity and efficiency of model calibra-
tion and validation by using a mechanistic model to “pre-calculate” a
relatively wide range of model input and output combinations from
which a model emulator can be developed. The emulator is then used
to iterate on model inputs until optimal combinations of input parame-
ters minimizing error between outputs and sample data are obtained.
The emulator provides a mechanism to efficiently calculate combina-
tions of inputs and outputs, allowing many more combinations of
model parameters to be evaluated than would otherwise be possible
using the mechanistic model directly.

This approach would provide an understanding of the full range of
inputs calibrating to the sample data. Combinations of model parame-
ters resulting in similar model fit to data would be considered to repre-
sent similarly likely scenarios. If only a small range of model parameters
fit the data well, one would conclude that the available data are ade-
quate to uniquely identify the most likely model. In this situation, one
could be confident in model projections, whereas a broad range of
model parameter combinations resulting in similar model fit to data,
would suggest that the sample data are inadequate to uniquely identify
a likely model. In this situation, one would not ascribe a great deal of
confidence in modeled projections.

4.4. Implications for remedy selection

The model emulation results demonstrate the importance of gener-
ating an accurate estimation of both surficial sediment concentrations
and the rate of natural recovery of the sediment surface in order for
mechanistic models to provide useful information for decision-makers
on the relative comparisons among remedial alternatives. If the
model-predicted rate of natural recovery is too high, the magnitude of
the difference between MNA and an active remedy or between various
active remedies, such as the selected remedy for the Hudson River site
and a more comprehensive alternative, will be underestimated. USEPA
considered two alternative dredging scenarios: the selected remedy
(REM1) and a full section removal. The full section removal scenario es-
sentially doubled the area to be dredged (additional 190 ha). According
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to USEPA's review of alternatives, full section removal would have been
more protective, but the projected difference in fish concentrations
(and risk) between the two remedial scenarios was considered too
small to warrant the increased cost (USEPA, 2002). The difference be-
tween those two dredging alternatives was understated because of
the overly optimistic rate of recovery of the surface sediment consid-
ered. This is illustrated in Fig. 7, which clearly discriminates between
the different alternatives and shows the large difference in time to
reach risk thresholds for emulated fish concentrations for the selected
dredging remedy (REM1) and for the updated scenario with a more ag-
gressive (but less than full section removal) remedy (REM3). This hypo-
thetical remedy, which maintained the same target cleanup levels for
surface sediment throughout the UHR, would involve removing an esti-
mated additional 71 ha, b50% of the area under the full section removal
scenario.

While we estimate risk thresholds would be reached meaningfully
sooner under this hypothetical and more aggressive remedy (REM3)
than under the selected remedywith updated sediment surface concen-
trations and decay rate (REM2), the estimated time to thresholdswould
still be longer than the original mechanistic model projections (REM1).
Our analysis suggests that achievement of LHR fish PCB threshold con-
centrations targeted as remedial action objectives to protect human
health will be delayed for up to several decades. Our analysis also im-
plies that the remedial action objectives will not be met in the time
frame identified in the 2002 ROD for the Hudson River (USEPA, 2002)
without implementing a more comprehensive remedy.

Models are often considered to be most useful for evaluating uncer-
tainty in predictions of the relative, as opposed to absolute, benefits for
alternative remedial options (Glaser and Bridges, 2007). In such situa-
tions management teams may rationalize potential inaccuracies in
model forecasts by assuming that relative comparison of forecast reme-
dial effectiveness is possible even when absolute forecasts may be inac-
curate or highly uncertain. Our analyses suggest that when models are
biased or imprecise the relative differences between remedial alterna-
tives can be significantly under- or over-estimated. In addition, the
model emulation approach can serve to improve precision and reduce
bias in model output, therefore more reliably discriminating among re-
medial alternatives. Box and Draper (1987) stated “All models are
wrong, some are useful”. The models discussed in this paper rely on ac-
curate surface sediment concentrations and the rate of change to make
reliable projections of concentrations in sediment, water, and biota. The
best way for resource managers and decision-makers to know if the
models used for comparing remedial options are useful is to collect sys-
tematic, unbiased data on surface sediment concentrations that can be
used to estimate the rate of natural recovery and to regularly monitor
fish tissues for bioaccumulative contaminants.
5. Conclusions

Our analyses demonstrate that pre-remedial surface sediment Tri+
PCBs in the Upper Hudson River were two to three times higher and
estimated post-remediation Tri+ PCBs averaged about four times
higher than predicted by the original mechanistic models used by
USEPA in theHudson River 2002 ROD. The rate of recovery, asmeasured
by the exponential decay rate of Tri+ PCBs in surface sediment, was
overestimated by the original mechanistic models. We estimated a
mean of 1.3% and a 95% upper CI of ~3% compared to the ~8% derived
from the original EPA and GE mechanistic models.

The emulated models successfully reproduced the mechanistic
model projections for sediment and water in the UHR and fish in the
LHR. The emulatedmodels were used to incorporate the updated infor-
mation on higher surface sediment concentrations and reduced rate of
sediment recovery. Our model projections suggest that the original
mechanistic model projections greatly underestimated the time to
reach risk thresholds in the LHR fish, thereby extending by decades
the time period for the project to reach its fish PCB-based remedial ac-
tion objectives in the LHR.

The results also demonstrated the adverse impact of over-estimation
of the rate of sediment recovery on the potential ability of riskmanagers
to discriminate among alternative remedial scenarios.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2016.02.072.
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Appendix A. Mathematical formulation for emulator

Table A.1 summarizes the locations of the four dams (River Mile=
di), acres of cohesive sediments (Ai), distances between dams (δi=
di−di−1), area remediated and average distance between deposits

and downstream dams ðdiÞ. Table 2 lists the Tri+ PCB concentrations
(csi) in surface sediment in 2003 and 2010 for each of the five scenarios
evaluated in this study. The load at the ith dam is represented by Li and
the transfer coefficients from water to sediment and sediment to water
are represented by γi and gi respectively. With this notation, the pro-
cesses for deposition and resuspension at each model annual time-
step were described mathematically in the following set of four equa-
tions which are nonlinear in the transfer coefficients

Li ¼ Li−1 � 1−gi � δið Þ
þ γi � csi � Aið Þ � 1−gi � di

� �
þ βi � Ri � csi � Aið Þ

n o
� Qi ðA:1Þ

where i=1,2 ,3 ,4 indexes each of the four modeled sections of the
river, βi represents the sediment to water net transfer coefficient for
dredged residuals and Ri represents the 8% decay of post-dredge resid-
ual concentrations. If discharge at successive dams is similar (Qi =
Qi − 1), Eq. (A.1) can also be expressed in terms of water column con-
centrations as opposed to loads by dividing both sides of Eq. (A.1) by
Qi giving the following Eq. (A.2).

cwi ¼ cwi−1 � 1−gi � δið Þ þ
�
γi � csi � Aið Þ � 1−gi � di

� �
þ βi

� Ri � csi � Aið Þ
� ðA:2Þ

For the Hudson River, results were similar for Eqs. (A.1) and (A.2) so
the simpler Eq. (A.2) was used for these analyses.

Each of the 25 years from 2010 through 2034 provides a different set
of modeled sediment bed and water column Tri+ PCB concentrations
from which the best estimates of emulator net transfer coefficients
(gi,γiandβi, i=1,2,3,4) can be estimated using constrained non-
linear least squares. These paired inputs and outputs from the EPA
mechanisticmodelwere available for two remedial scenarios; 1) natural
recovery (MNA1), and 2) the selected remedy (REM1A). Each of these
scenarios was also simulated with the assumptions of 0 and 2 ng/l
PCBs entering from upstream of RS1. Modeled time series spanning 30
(2005–2034) and 25 (2010–2034) year time frames forMNA and active
remediation respectively, under two sets of upstream input assump-
tions and four river sections provided 440 (2 × 25 × 4 + 2 × 30 × 4)
nonlinear equations in 12 unknown net transfer coefficients
(i .e.,gi,γiandβi, i=1,2,3,4). The transfer coefficients were estimated
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Table A.1
Summary of input parameters and initial conditions for calibrating model emulator.

Area (ha)

Reach River
section

Downstream river
kilometer

River section
length (km)

Cohesive sediment
area (ha)a

Alternative REM1
remediated areab

Alternative REM2
remediated areac

Alternative REM3
remediated aread

Thompson Island Pool RS1 303.4 10.1 42 114 124 124
Schuylerville RS2 295.2 8.2 54 31 35 56
Stillwater RS3A 270.7 24.5 93 38 29 64
Waterford RS3B 263.1 7.6 52 17 13 28
Total 200 201 272

a Cohesive sediment area from Tables 5.2a–5.2b in USEPA (2000b).
b Area for alternative REM1 from Tables 8–9 in USEPA (2000a).
c Alternative REM2 area calculated based on delineated dredge area.
d Alternative REM3 area based on delineated dredge area for the selected remedy and additional area estimated from number of cores exceeding RS1 target cleanup levels.

Table A.2
Estimated model emulation nonlinear regression coefficients.

Model coefficients River section

RS1 RS2 RS3A RS3B

Water to sed 0.0000 0.0350 0.0157 0.0641
Sed to water 0.0160 0.0095 0.0078 0.0451
Post dredge resuspension 0.0251 0.0143 0.0283 0.0357
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by constrained nonlinear least squares with MATLAB© Release 2011a
(The MathWorks 2011).

Appendix B. Probability model for synthetic sediment time series

The residual process Ci(t)=C0ie
−kt+εi(t) was simulated by randomly

drawing an exponential decay rate (k) from a uniformprobability distri-
bution on the interval 0.02–0.05, followed by simulation of εi(t) as a
mean zero normally distributed random variable with covariance ma-
trix Cwith the entries cij defined as cov(εi(t),εi(t+h))=e−aih2, and co-
variance between subsections i and j given by cov(εi(t),εj(t))=cijfor i≠ j.
The constants ai and cij were estimated from the four mechanistic
modeled sediment Tri+ PCB concentration time series. The expected
mean of the simulated sediment series for the ith subsection is C0ie−kt.
The simulated series are distributed log-normally because εi(t) is a nor-
mally distributed random variable.

The estimated coefficient ai defining the rate of decline in temporal
auto correlation was 0.1. The resulting correlation matrix C was a real
symmetric banded matrix with diagonal entries Cii = 1.0 and with 5
non-zero off diagonal with values Ci,i ± j = 1, 0.90, 0.67, 0.41, 0.20,
and 0.08; for j = 1, 2, …, 5 respectively and i = 1, 2, 3, …., 200 years.
The remaining values Ci,i ± j = 0; for j N 5.
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Table S-1. Summary of linear regression of fish tissue concentrations on water column concentrations (C_w) at Waterford (RS3B). 

Species River Mile/Kilometer Parameter Estimate Standard Error T-Stat Prob T > |t| R-Squared 

White Perch 152/245 Intercept -0.0102 0.0154 -0.7 0.516 0.944 

White Perch 152/245 C_w 0.0502 0.0023 21.4 0.000 
 

Brown Bullhead 152/245 Intercept -0.0033 0.0096 -0.3 0.731 0.953 

Brown Bullhead 152/245 C_w 0.0339 0.0015 23.3 0.000 
 

Largemouth Bass 152/245 Intercept -0.0022 0.0237 -0.1 0.926 0.922 

Largemouth Bass 152/245 C_w 0.0646 0.0036 17.9 0.000 
 

Yellow Perch 152/245 Intercept -0.0081 0.0113 -0.7 0.480 0.912 

Yellow Perch 152/245 C_w 0.0288 0.0017 16.8 0.000 
 

White Perch 113/182 Intercept 0.0005 0.0065 0.1 0.936 0.973 

White Perch 113/182 C_w 0.0306 0.0010 31.1 0.000 
 

Brown Bullhead 113/182 Intercept -0.0003 0.0050 -0.1 0.953 0.977 

Brown Bullhead 113/182 C_w 0.0259 0.0008 34.2 0.000 
 

Largemouth Bass 113/182 Intercept -0.0068 0.0142 -0.5 0.638 0.959 

Largemouth Bass 113/182 C_w 0.0546 0.0022 25.3 0.000 
 

Yellow Perch 113/182 Intercept 0.0011 0.0047 0.2 0.819 0.960 

Yellow Perch 113/182 C_w 0.0183 0.0007 25.3 0.000 
 

White Perch 90/145 Intercept -0.0012 0.0039 -0.3 0.766 0.987 

White Perch 90/145 C_w 0.0269 0.0006 44.8 0.000 
 

Brown Bullhead 90/145 Intercept 0.0001 0.0033 0.0 0.979 0.987 

Brown Bullhead 90/145 C_w 0.0233 0.0005 46.1 0.000 
 

Largemouth Bass 90/145 Intercept -0.0100 0.0078 -1.3 0.208 0.982 

Largemouth Bass 90/145 C_w 0.0456 0.0012 38.6 0.000 
 

Yellow Perch 90/145 Intercept 0.0026 0.0027 1.0 0.334 0.981 

Yellow Perch 90/145 C_w 0.0152 0.0004 37.2 0.000 
 

White Perch 50/80 Intercept -0.0045 0.0035 -1.3 0.212 0.986 

White Perch 50/80 C_w 0.0230 0.0005 43.3 0.000 
 

Brown Bullhead 50/80 Intercept 0.0010 0.0015 0.6 0.536 0.991 

Brown Bullhead 50/80 C_w 0.0125 0.0002 53.9 0.000 
 

Largemouth Bass 50/80 Intercept 0.0042 0.0063 0.7 0.513 0.987 

Largemouth Bass 50/80 C_w 0.0439 0.0010 45.6 0.000 
 

Yellow Perch 50/80 Intercept 0.0044 0.0021 2.0 0.052 0.987 

Yellow Perch 50/80 C_w 0.0147 0.0003 45.0 0.000 
 

 

 

  



 

Table S-2.  Estimated number of years to reach 0.4 ppm human health risk threshold by species and location based on 
exponential decay rates of 8% and 3%. WP=White Perch; LMB=Largemouth Bass: BB=Brown Bullhead; YP=Yellow Perch 

            

            Number of Years (8%) 
 

Number of Years (3%) 

Species 
Location MNA1 MNA2 REM1 REM2 REM3 

 
MNA1 MNA2 REM1 REM2 REM3 

WP152 2 18 0 10 4 
 

4 56 0 44 11 

WP113 0 11 0 5 0 
 

0 39 0 18 3 

WP90 0 10 0 4 0 
 

0 35 0 15 1 

WP50 0 7 0 2 0 
 

0 30 0 11 0 

LMB152 6 22 1 14 6 
 

15 64 1 52 17 

LMB113 3 19 0 11 4 
 

8 58 0 47 13 

LMB90 1 16 0 9 3 
 

1 52 0 41 10 

LMB50 1 16 0 9 3 
 

1 51 0 40 10 

BB152 0 13 0 6 0 
 

0 43 0 21 5 

BB113 0 9 0 4 0 
 

0 34 0 14 1 

BB90 0 8 0 3 0 
 

0 30 0 11 0 

BB50 0 0 0 0 0 
 

0 10 0 0 0 

YP152 0 10 0 5 0 
 

0 37 0 16 2 

YP113 0 5 0 0 0 
 

0 23 0 6 0 

YP90 0 2 0 0 0 
 

0 17 0 3 0 

YP50 0 2 0 0 0 
 

0 16 0 2 0 

 

  



 

Table S-3.  Estimated number of years to 0.2 ppm reach human health risk threshold by species and location based on 
exponential decay rates of 8% and 3%. WP=White Perch; LMB=Largemouth Bass: BB=Brown Bullhead; YP=Yellow 
Perch 

            

            Number of Years (8%) 
 

Number of Years (3%) 

Species 
Location MNA1 MNA2 REM1 REM2 REM3 

 
MNA1 MNA2 REM1 REM2 REM3 

WP152 12 25 5 19 10 
 

27 79 9 67 46 

WP113 5 21 1 13 6 
 

13 62 1 51 16 

WP90 3 19 0 11 5 
 

8 58 0 46 13 

WP50 1 17 0 10 3 
 

1 53 0 41 10 

LMB152 16 28 1 14 7 
 

36 87 16 76 55 

LMB113 13 26 8 23 14 
 

30 81 11 70 49 

LMB90 10 24 0 11 4 
 

24 75 7 64 43 

LMB50 11 24 6 20 12 
 

23 74 8 63 43 

BB152 6 22 0 10 3 
 

16 66 2 54 18 

BB113 3 18 4 17 9 
 

7 57 0 45 13 

BB90 1 17 0 3 0 
 

3 53 0 42 11 

BB50 0 9 4 18 10 
 

0 33 0 13 1 

YP152 4 19 0 12 5 
 

9 60 0 48 14 

YP113 0 14 0 7 1 
 

0 45 0 23 7 

YP90 0 11 0 5 0 
 

0 39 0 18 4 

YP50 0 11 0 5 0 
 

0 38 0 18 3 

             



 Fig. S-1. Schematic of regression model emulation of USEPA mechanistic model. 
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 Fig. S-2. Mechanistic food web model predictions of Tri+ PCB tissue concentrations of brown bullhead (BB), largemouth bass 
(LMB), and yellow perch (YP) from RM152 compared to white perch Tri+ PCB tissue concentrations from RM152. 
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 Fig. S-3. Mechanistic food web model predictions of Tri+ PCB tissue concentrations of white perch (WP) from RM113, RM90, and 
RM50 compared to white perch Tri+ PCB tissue concentrations from RM152. 
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 Fig. S-4. Emulated model (dotted line) for largemouth bass Tri+ PCB (mg/kg; normalized to 1.2% lipid) from RM152 with 3% 
exponential decay compared to monitoring data for largemouth bass and smallmouth bass between 1997 and 2014 (circles) and risk 
thresholds (0.2 and 0.4 mg/kg PCBs) (horizontal dashed lines). 
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